Can sonication enhance release from liquid-core capsules with a hydrogel membrane?
نویسندگان
چکیده
The objective is to investigate the influence of sonication on the mechanical and release properties of hydrogel capsules. A new fabrication process is developed to fabricate millimetric capsules made of a highly-viscous liquid core protected by a thin hyperelastic alginate membrane. At high intensities and/or long exposure times, sonication can lead to the capsule rupture, because it induces fatigue in the membrane. Below the breakup threshold, no remnant effect of sonication is, however, measured on the capsule mechanical properties. The release is studied by sonicating capsules filled with blue dextran suspended in an aqueous solution. The mass release that results from sonication is found to be proportional to the sonication duration time and pressure wave amplitude. A possible physical interpretation is that the acoustic streaming flow induced by the ultrasonic wave enhances convection in the vicinity of the capsule membrane and thus mass release. We have finally quantified the passive release subsequent to low-intensity sonications: it is on average identical to the one measured on non-sonicated capsules. Overall the membrane therefore recovers its physical and mechanical properties after sonication. If sonication leads to an increase in porosity of the capsule membrane, the increase is temporary and reverses back at the end of the ultrasonic stimulation.
منابع مشابه
Can sonication increase the release from alginate capsules?
The objective is to investigate the influence of sonication on the mechanical and release properties of capsules made of a soft membrane in hydrogel. If high sonication may lead to the capsule rupture induced by a fatigue phenomenon, no influence of sonication is measured on the capsule mechanical properties below the breakup threshold. The release is studied by sonicating capsules filled with ...
متن کاملPhysicochemical properties of aqueous core hydrogel capsules.
Capsules having a thin alginate hydrogel membrane and an aqueous core can be obtained by a process that involves a co-extrusion step in air followed by a sol-gel transition of the shell after immersion into a gelling bath. The possibility to encapsulate cells that further grow in these biocompatible compartments, and thus offer a versatile tool for cell culture, led us to investigate the physic...
متن کاملControlled production of sub-millimeter liquid core hydrogel capsules for parallelized 3D cell culture.
Liquid core capsules having a hydrogel membrane are becoming a versatile tool for three-dimensional culture of micro-organisms and mammalian cells. Making sub-millimeter capsules at a high rate, via the breakup of a compound jet in air, opens the way to high-throughput screening applications. However, control of the capsule size monodispersity, especially required for quantitative bioassays, wa...
متن کاملSealing liquid-filled pectinate capsules with a shellac coating.
Liquid-filled pectinate capsules have a large potential for the controlled and site-specific delivery of liquid drugs. Earlier studies have shown that pure pectinate capsules can store drugs only for a few minutes. Here, we show that the retention time can be extended to several hours by coating the capsules with the natural resin shellac. A bilberry extract containing anthocyanins with promisi...
متن کاملPreparation and Characterization of Thermoresponsive In-situ Forming Poloxamer Hydrogel for Controlled Release of Nile red-loaded Solid Lipid Nanoparticles
Preparation and characterization of thermoresponsive in-situ forming poloxamer hydrogel for controlled release of Nile red-loaded solid lipid nanoparticles. Nanoparticles (NPs) are cleared rapidly from systemic circulation and do not provide sustained action in most cases. To solve this problem, this investigation introduces an erodible in-situ forming gel system as potential vehicles for prolo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of colloid and interface science
دوره 368 1 شماره
صفحات -
تاریخ انتشار 2012